Altered CO 2 sensitivity of connexin26 mutant hemichannels in vitro

نویسندگان

  • Elizabeth de Wolf
  • Joseph van de Wiel
  • Jonathan Cook
  • Nicholas Dale
چکیده

Connexin26 (Cx26) mutations underlie human pathologies ranging from hearing loss to keratitis ichthyosis deafness (KID) syndrome. Cx26 hemichannels are directly gated by CO2 and contribute to the chemosensory regulation of breathing. The KID syndrome mutation A88V is insensitive to CO2, and has a dominant negative action on the CO2 sensitivity of Cx26WT hemichannels, and reduces respiratory drive in humans. We have now examined the effect of further human mutations of Cx26 on its sensitivity to CO2 : Mutated Cx26 subunits, carrying one of A88S, N14K, N14Y, M34T, or V84L, were transiently expressed in HeLa cells. The CO2-dependence of hemichannel activity, and their ability to exert dominant negative actions on cells stably expressing Cx26WT, was quantified by a dye-loading assay. The KID syndrome mutation, N14K, abolished the sensitivity of Cx26 to CO2 Both N14Y and N14K exerted a powerful dominant negative action on the CO2 sensitivity of Cx26WT None of the other mutations (all recessive) had a dominant negative action. A88S shifted the affinity of Cx26 to slightly higher levels without reducing its ability to fully open to CO2 M34T did not change the affinity of Cx26 for CO2 but reduced its ability to open in response to CO2 V84L had no effect on the CO2-sensitivity of Cx26. Some pathological mutations of Cx26 can therefore alter the CO2 sensitivity of Cx26 hemichannels. The loss of CO2 sensitivity could contribute to pathology and consequent reduced respiratory drive could be an unrecognized comorbidity of these pathologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connexin26 hemichannels with a mutation that causes KID syndrome in humans lack sensitivity to CO2

AbstractMutations in connexin26 (Cx26) underlie a range of serious human pathologies. Previously we have shown that Cx26 hemichannels are directly opened by CO2 (Meigh et al., 2013). However the effects of human disease-causing mutations on the CO2 sensitivity of Cx26 are entirely unknown. Here, we report the first connection between the CO2 sensitivity of Cx26 and human patholog...

متن کامل

Analysis of Trafficking, Stability and Function of Human Connexin 26 Gap Junction Channels with Deafness-Causing Mutations in the Fourth Transmembrane Helix

Human Connexin26 gene mutations cause hearing loss. These hereditary mutations are the leading cause of childhood deafness worldwide. Mutations in gap junction proteins (connexins) can impair intercellular communication by eliminating protein synthesis, mis-trafficking, or inducing channels that fail to dock or have aberrant function. We previously identified a new class of mutants that form no...

متن کامل

Rational design of new NO and redox sensitivity into connexin26 hemichannels

CO2 directly opens hemichannels of connexin26 (Cx26) by carbamylating K125, thereby allowing salt bridge formation with R104 of the neighbouring subunit in the connexin hexamer. The formation of the inter-subunit carbamate bridges within the hexameric hemichannel traps it in the open state. Here, we use insights derived from this model to test whether the range of agonists capable of opening Cx...

متن کامل

Insights on the mechanisms of Ca2+ regulation of connexin26 hemichannels revealed by human pathogenic mutations (D50N/Y)

Because of the large size and modest selectivity of the connexin hemichannel aqueous pore, hemichannel opening must be highly regulated to maintain cell viability. At normal resting potentials, this regulation is achieved predominantly by the physiological extracellular Ca(2+) concentration, which drastically reduces hemichannel activity. Here, we characterize the Ca(2+) regulation of channels ...

متن کامل

Three-dimensional structure of a human connexin26 gap junction channel reveals a plug in the vestibule.

Connexin molecules form intercellular membrane channels facilitating electronic coupling and the passage of small molecules between adjoining cells. Connexin26 (Cx26) is the second smallest member of the gap junction protein family, and mutations in Cx26 cause certain hereditary human diseases such as skin disorders and hearing loss. Here, we report the electron crystallographic structure of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016